Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(3): 389-399, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470611

RESUMO

The Mesenchymal Epithelial Transition (MET) receptor tyrosine kinase is upregulated or mutated in 5% of non-small-cell lung cancer (NSCLC) patients and overexpressed in multiple other cancers. We sought to develop a novel single-domain camelid antibody with high affinity for MET that could be used to deliver conjugated payloads to MET expressing cancers. From a naïve camelid variable-heavy-heavy (VHH) domain phage display library, we identified a VHH clone termed 1E7 that displayed high affinity for human MET and was cross-reactive with MET across multiple species. When expressed as a bivalent human Fc fusion protein, 1E7-Fc was found to selectively bind to EBC-1 (MET amplified) and UW-Lung 21 (MET exon 14 mutated) cell lines by flow cytometry and immunofluorescence imaging. Next, we investigated the ability of [89Zr]Zr-1E7-Fc to detect MET expression in vivo by PET/CT imaging. [89Zr]Zr-1E7-Fc demonstrated rapid localization and high tumor uptake in both xenografts with a %ID/g of 6.4 and 5.8 for EBC-1 and UW-Lung 21 at 24 h, respectively. At the 24 h time point, clearance from secondary and nontarget tissues was also observed. Altogether, our data suggest that 1E7-Fc represents a platform technology that can be employed to potentially both image and treat MET-altered NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral
2.
J Biol Chem ; 299(12): 105378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866635

RESUMO

Membrane contact sites (MCSs) between endosomes and the endoplasmic reticulum (ER) are thought to act as specialized trigger zones for Ca2+ signaling, where local Ca2+ released via endolysosomal ion channels is amplified by ER Ca2+-sensitive Ca2+ channels into global Ca2+ signals. Such amplification is integral to the action of the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, functional regulators of inter-organellar Ca2+ crosstalk between endosomes and the ER remain poorly defined. Here, we identify progesterone receptor membrane component 1 (PGRMC1), an ER transmembrane protein that undergoes a unique heme-dependent dimerization, as an interactor of the endosomal two pore channel, TPC1. NAADP-dependent Ca2+ signals were potentiated by PGRMC1 overexpression through enhanced functional coupling between endosomal and ER Ca2+ stores and inhibited upon PGRMC1 knockdown. Point mutants in PGMRC1 or pharmacological manipulations that reduced its interaction with TPC1 were without effect. PGRMC1 therefore serves as a TPC1 interactor that regulates ER-endosomal coupling with functional implications for cellular Ca2+ dynamics and potentially the distribution of heme.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático , Endossomos , Receptores de Progesterona , Humanos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Heme/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
3.
Sci Signal ; 16(799): eadg0485, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607218

RESUMO

The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) evokes calcium ion (Ca2+) release from endosomes and lysosomes by activating two-pore channels (TPCs) on these organelles. Rather than directly binding to TPCs, NAADP associates with proteins that indirectly confer NAADP sensitivity to the TPC complex. We investigated whether and how the NAADP-binding proteins Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12) contributed to NAADP-TPC-Ca2+ signaling in human cells. Biochemical and functional analyses revealed that recombinant JPT2 and LSM12 both bound to NAADP with high affinity and that endogenous JPT2 and LSM12 independently associated with TPC1 and TPC2. On the basis of knockout and rescue analyses, both NAADP-binding proteins were required to support NAADP-evoked Ca2+ signaling and contributed to endolysosomal trafficking of pseudotyped coronavirus particles. These data reveal that the NAADP-binding proteins JPT2 and LSM12 convergently regulate NAADP-evoked Ca2+ release and function through TPCs.


Assuntos
Proteínas de Transporte , Infecções por Coronavirus , Humanos , Endossomos/genética , NADP
4.
Int J Biol Macromol ; 230: 123205, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632962

RESUMO

The human sodium-dependent vitamin C transporter-1 (hSVCT1) is localized at the apical membrane domain of polarized intestinal and renal epithelial cells to mediate ascorbic acid (AA) uptake. Currently, little is known about the array of interacting proteins that aid hSVCT1 trafficking and functional expression at the cell surface. Here we used an affinity tagging ('One-STrEP') and proteomic approach to identify hSVCT1 interacting proteins, which resolved secretory carrier-associated membrane protein-2 (SCAMP2) as a novel accessary protein partner. SCAMP2 was validated as an accessory protein by co-immunoprecipitation with hSVCT1. Co-expression of hSVCT1 and SCAMP2 in HEK-293 cells revealed both proteins co-localized in intracellular structures and at the plasma membrane. Functionally, over-expression of SCAMP2 potentiated 14C-AA uptake, and reciprocally silencing endogenous SCAMP2 decreased 14C-AA uptake. Finally, knockdown of endogenous hSVCT1 or SCAMP2 impaired differentiation of human-induced pluripotent stem cells (hiPSCs) toward a neuronal fate. These results establish SCAMP2 as a novel hSVCT1 accessary protein partner that regulates AA uptake in absorptive epithelia and during neurogenesis.


Assuntos
Proteômica , Transportadores de Sódio Acoplados à Vitamina C , Humanos , Células HEK293 , Membrana Celular/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/genética , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neurônios/metabolismo , Transporte Proteico , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Bioorg Med Chem ; 76: 117099, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36446271

RESUMO

A photo-clickable analog of adenosine was devised and synthesized in which the photoactive functional group (8-azidoadenosine) and the click moiety (2'-O-propargyl-ether) were compactly combined within the structure of the adenosine nucleoside itself. We synthesized 8-N3-2'-O-propargyl adenosine in four steps starting from adenosine. This photo-clickable adenosine was 5'-phosphorylated and coupled to nicotinamide mononucleotide to form the NAD analog 8-N3-2'-O-propargyl-NAD. This NAD analog was recognized by Aplysia californica ADP-ribosyl cyclase and enzymatically cyclized producing 8-N3-2'-O-propargyl cyclic ADP-ribose. Photo-clickable cyclic-ADP-ribose analog was envisioned as a probe to label cyclic ADP-ribose binding proteins. The monofunctional 8-N3-cADPR has previously been shown to be an antagonist of cADPR-induced calcium release [T.F. Walseth et. al., J. Biol. Chem (1993) 268, 26686-26691]. 2'-O-propargyl-cADPR was recognized as an agonist which elicited Ca2+ release when added at low concentration to sea urchin egg homogenates. The bifunctional 8-N3-2'-O-propargyl cyclic ADP-ribose did not elicit Ca2+ release at low concentration or impact cyclic ADP-ribose mediated Ca2+ release either when added to sea urchin egg homogenates or when microinjected into cultured human U2OS cells. The photo-clickable adenosine will none-the-less be a useful scaffold for synthesizing photo-clickable probes for identifying proteins that interact with a variety of adenosine nucleotides.


Assuntos
ADP-Ribose Cíclica , NAD , Humanos , ADP-Ribose Cíclica/farmacologia , Adenosina/farmacologia
6.
Cell Calcium ; 103: 102543, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123238

RESUMO

Two-pore channels are ancient members of the voltage-gated ion channel superfamily that are expressed predominantly on acidic organelles such as endosomes and lysosomes. Here we review recent advances in understanding how TPCs are activated by their ligands and identify five salient features: (1) TPCs are Ca2+-permeable non-selective cation channels gated by NAADP. (2) NAADP activation is indirect through associated NAADP receptors. (3) TPCs are also Na+-selective channels gated by PI(3,5)P2. (4) PI(3,5)P2 activation is direct through a structurally-resolved binding site. (5) TPCs switch their ion selectivity in an agonist-dependent manner.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , NADP/análogos & derivados , Canais de Cálcio/classificação , Canais de Cálcio/metabolismo , NADP/metabolismo
7.
iScience ; 25(1): 103706, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059610

RESUMO

Ryanodine receptors (RyRs) are large, intracellular ion channels that control Ca2+ release from the sarco/endoplasmic reticulum. Dysregulation of RyRs in skeletal muscle, heart, and brain has been implicated in various muscle pathologies, arrhythmia, heart failure, and Alzheimer's disease. Therefore, there is considerable interest in therapeutically targeting RyRs to normalize Ca2+ homeostasis in scenarios involving RyR dysfunction. Here, a simple invertebrate screening platform was used to discover new chemotypes targeting RyRs. The approach measured Ca2+ signals evoked by cyclic adenosine 5'-diphosphate ribose, a second messenger that sensitizes RyRs. From a 1,534-compound screen, FLI-06 (currently described as a Notch "inhibitor") was identified as a potent blocker of RyR activity. Two closely related tyrosine kinase inhibitors that stimulate and inhibit Ca2+ release through RyRs were also resolved. Therefore, this simple screen yielded RyR scaffolds tractable for development and revealed an unexpected linkage between RyRs and trafficking events in the early secretory pathway.

8.
Cell Calcium ; 102: 102528, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033909

RESUMO

Many viruses exploit host-cell Ca2+ signaling processes throughout their life cycle. This is especially relevant for viruses that translocate through the endolysosomal system, where cellular infection is keyed to the microenvironment of these acidic Ca2+ stores and Ca2+-dependent trafficking pathways. As regulators of the endolysosomal ionic milieu and trafficking dynamics, two families of endolysosomal Ca2+-permeable cation channels - two pore channels (TPCs) and transient receptor potential mucolipins (TRPMLs) - have emerged as important host-cell factors in viral entry. Here, we review: (i) current evidence implicating Ca2+ signaling in viral translocation through the endolysosomal system, (ii) the roles of these ion channels in supporting cellular infection by different viruses, and (iii) areas for future research that will help define the potential of TPC and TRPML ligands as progressible antiviral agents.


Assuntos
Cálcio , Vírus , Cálcio/metabolismo , Sinalização do Cálcio , Endossomos/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Vírus/metabolismo
9.
Trends Biochem Sci ; 47(3): 235-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34810081

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.


Assuntos
Canais de Cálcio , Proteínas de Transporte , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , NADP/análogos & derivados , NADP/metabolismo
10.
Nat Commun ; 12(1): 7325, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916516

RESUMO

Single-domain Variable New Antigen Receptors (VNARs) from the immune system of sharks are the smallest naturally occurring binding domains found in nature. Possessing flexible paratopes that can recognize protein motifs inaccessible to classical antibodies, VNARs have yet to be exploited for the development of SARS-CoV-2 therapeutics. Here, we detail the identification of a series of VNARs from a VNAR phage display library screened against the SARS-CoV-2 receptor binding domain (RBD). The ability of the VNARs to neutralize pseudotype and authentic live SARS-CoV-2 virus rivalled or exceeded that of full-length immunoglobulins and other single-domain antibodies. Crystallographic analysis of two VNARs found that they recognized separate epitopes on the RBD and had distinctly different mechanisms of virus neutralization unique to VNARs. Structural and biochemical data suggest that VNARs would be effective therapeutic agents against emerging SARS-CoV-2 mutants, including the Delta variant, and coronaviruses across multiple phylogenetic lineages. This study highlights the utility of VNARs as effective therapeutics against coronaviruses and may serve as a critical milestone for nearing a paradigm shift of the greater biologic landscape.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Receptores de Antígenos/química , Receptores de Antígenos/imunologia , Tubarões/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Epitopos , Mutação , Filogenia , Ligação Proteica , SARS-CoV-2 , Alinhamento de Sequência , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus/imunologia
12.
Int J Biol Macromol ; 192: 1178-1184, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673103

RESUMO

Ascorbic acid (AA) uptake in neurons occurs via a Na+-dependent carrier-mediated process mediated by the sodium-dependent vitamin C transporter-2 (SVCT2). Relatively little information is available concerning the network of interacting proteins that support human (h)SVCT2 trafficking and cell surface expression in neuronal cells. Here we identified the synaptogenic adhesion protein, calsyntenin-3 (CLSTN3) as an hSVCT2 interacting protein from yeast two-hybrid (Y2H) screening of a human adult brain cDNA library. This interaction was confirmed by co-immunoprecipitation, mammalian two-hybrid (M2H), and co-localization in human cell lines. Co-expression of hCLSTN3 with hSVCT2 in SH-SY5Y cells led to a marked increase in AA uptake. Reciprocally, siRNA targeting hCLSTN3 inhibited AA uptake. In the J20 mouse model of Alzheimer's disease (AD), mouse (m)SVCT2 and mCLSTN3 expression levels in hippocampus were decreased. Similarly, expression levels of hSVCT2 and hCLSTN3 were markedly decreased in hippocampal samples from AD patients. These findings establish CLSTN3 as a novel hSVCT2 interactor in neuronal cells with potential pathophysiological significance.


Assuntos
Ácido Ascórbico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
13.
Sci Signal ; 14(675)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758061

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Sinalização do Cálcio/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADP/análogos & derivados , SARS-CoV-2/fisiologia , Marcadores de Afinidade , Animais , Canais de Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Química Click/métodos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , NADP/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transcriptoma , Internalização do Vírus
14.
Bioorg Med Chem ; 30: 115901, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321420

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADP) is an indispensable metabolic co-substrate and nicotinic acid adenine dinucleotide phosphate (NAADP) is an important Ca2+ releasing intracellular second messenger. Exploration of the NADP and NAADP interactome often requires the synthesis of NADP derivatives substituted on the adenosine nucleoside. The introduction of the 2'-phosphate of NADP makes the synthesis of substituted NADP derivatives difficult. We have employed recombinant human NAD kinase expressed in E. coli as an enzymatic reagent to convert readily available synthetic NAD derivatives to NADP analogs, which were subsequently transformed into NAADP derivatives using enzyme catalyzed pyridine base exchange. 8-Ethynyl-NADP, 8-ethynyl-NAADP and 5-N3-8-ethynyl-NAADP were synthesized starting from a protected 8-ethynyladenosine using a combination of chemical and enzymatic steps and the NAADP derivatives shown to be recognized by the sea urchin NAADP receptor at low concentration. Our methodology will enable researchers to produce mono- and bi-substituted NADP and NAADP analogs that can be applied in proteomic studies to identify NADP and NAADP binding proteins.


Assuntos
Adenina/química , NADP/análogos & derivados , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , NADP/síntese química , NADP/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ouriços-do-Mar , Relação Estrutura-Atividade
15.
J Biol Chem ; 294(49): 18873-18880, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653697

RESUMO

The anthelmintic drug praziquantel (PZQ) is used to treat schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. PZQ causes Ca2+ influx and spastic paralysis of adult worms and rapid vacuolization of the worm surface. However, the mechanism of action of PZQ remains unknown even after 40 years of clinical use. Here, we demonstrate that PZQ activates a schistosome transient receptor potential (TRP) channel, christened SmTRPMPZQ, present in parasitic schistosomes and other PZQ-sensitive parasites. Several properties of SmTRPMPZQ were consistent with known effects of PZQ on schistosomes, including (i) nanomolar sensitivity to PZQ; (ii) stereoselectivity toward (R)-PZQ; (iii) mediation of sustained Ca2+ signals in response to PZQ; and (iv) a pharmacological profile that mirrors the well-known effects of PZQ on muscle contraction and tegumental disruption. We anticipate that these findings will spur development of novel therapeutic interventions to manage schistosome infections and broader interest in PZQ, which is finally unmasked as a potent flatworm TRP channel activator.


Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Eletrofisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Schistosoma/efeitos dos fármacos
16.
Cell Calcium ; 83: 102060, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442840

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing second messenger which triggers Ca2+ release in both sea urchin egg homogenates and in mammalian cells. The NAADP binding protein has not been identified and the regulation of NAADP mediated Ca2+ release remains controversial. To address this issue, we have synthesized an NAADP analog in which 3-azido-5-azidomethylbenzoic acid is attached to the amino group of 5-(3-aminopropyl)-NAADP to produce an NAADP analog which is both a photoaffinity label and clickable. This 'all-in-one-clickable' NAADP (AIOC-NAADP) elicited Ca2+ release when microinjected into cultured human SKBR3 cells at low concentrations. In contrast, it displayed little activity in sea urchin egg homogenates where very high concentrations were required to elicit Ca2+ release. In mammalian cell homogenates, incubation with low concentrations of [32P]AIOC-NAADP followed by irradiation with UV light resulted in labeling 23 kDa protein(s). Competition between [32P]AIOC-NAADP and increasing concentrations of NAADP demonstrated that the labeling was selective. We show that this label recognizes and selectively photodervatizes the 23 kDa NAADP binding protein(s) in cultured human cells identified in previous studies using [32P]5-N3-NAADP.


Assuntos
Ácido Benzoico/síntese química , Cálcio/metabolismo , Química Click/métodos , NADP/análogos & derivados , Marcadores de Fotoafinidade/síntese química , Animais , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular Tumoral , Humanos , NADP/síntese química , NADP/isolamento & purificação , Marcadores de Fotoafinidade/isolamento & purificação , Ligação Proteica , Ouriços-do-Mar
17.
Nat Commun ; 10(1): 2024, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048699

RESUMO

Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.


Assuntos
Injúria Renal Aguda/patologia , Cálcio/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Injúria Renal Aguda/genética , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Túbulos Renais Proximais/citologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
18.
Methods Cell Biol ; 151: 445-458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948025

RESUMO

Sea urchin eggs have been extensively used to study Ca2+ release through intracellular Ca2+-permeable channels. Their amenability to homogenization yields a robust, cell-free preparation that was central to establishing the Ca2+ mobilizing actions of cyclic ADP-ribose and NAADP. Egg homogenates have continued to provide insight into the basic properties and pharmacology of intracellular Ca2+ release channels. In this chapter, we describe methods for the preparation of egg homogenates and monitoring Ca2+ release using fluorimetry and radiotracer flux.


Assuntos
Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , NADP/análogos & derivados , Ouriços-do-Mar/metabolismo , Animais , Cálcio/química , Sinalização do Cálcio/efeitos dos fármacos , Sistema Livre de Células , ADP-Ribose Cíclica/química , Cinética , NADP/química , NADP/metabolismo , Óvulo/química , Proteínas/química , Proteínas/farmacologia , Ouriços-do-Mar/crescimento & desenvolvimento
19.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1180-1188, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30521871

RESUMO

Nicotinic acid adenine dinucleotide phosphate is an evolutionarily conserved second messenger, which mobilizes Ca2+ from acidic stores. The molecular identity of the NAADP receptor has yet to be defined. In pursuit of isolating and identifying NAADP-binding proteins, we synthesized and characterized a bifunctional probe that incorporates both a photoactivatable crosslinking azido moiety at the 5-position of the nicotinic ring and a 'clickable' ethynyl moiety to the 8-adenosyl position in NAADP. Microinjection of this 5N3-8-ethynyl-NAADP into cultured U2OS cells induced robust Ca2+ responses. Higher concentrations of 5N3-8-ethynyl were required to elicit Ca2+ release or displace 32P-NAADP in radioligand binding experiments in sea urchin egg homogenates. In human cell extracts, incubation of 32P-5N3-8-ethynyl-NAADP followed by UV irradiation resulted in selective labeling of 23 kDa and 35 kDa proteins and photolabeling of these proteins was prevented when incubated in the presence of unlabeled NAADP. Compared to the monofunctional 32P-5N3-NAADP, the clickable 32P-5N3-8-ethynyl-NAADP demonstrated less labeling of the 23 kDa and 35 kDa proteins (~3-fold) but provided an opportunity for further enrichment through the 'clickable' ethynyl moiety. No proteins were specifically labeled by 32P-5N3-8-ethynyl-NAADP in sea urchin egg homogenate. These experiments demonstrate that 5N3-8-ethynyl-NAADP is biologically active and selectively labels putative NAADP-binding proteins in mammalian systems, evidencing a 'bifunctional' probe with utility for isolating NAADP-binding proteins.


Assuntos
Sinalização do Cálcio , Corantes Fluorescentes , NADP/análogos & derivados , Coloração e Rotulagem , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , NADP/química , NADP/farmacologia , Ouriços-do-Mar
20.
Cell Calcium ; 75: 30-41, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121440

RESUMO

Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections are associated with a significant mortality rate, and existing drugs show poor efficacy. Identifying novel targets/pathways required for MERS infectivity is therefore important for developing novel therapeutics. As an enveloped virus, translocation through the endolysosomal system provides one pathway for cellular entry of MERS-CoV. In this context, Ca2+-permeable channels within the endolysosomal system regulate both the luminal environment and trafficking events, meriting investigation of their role in regulating processing and trafficking of MERS-CoV. Knockdown of endogenous two-pore channels (TPCs), targets for the Ca2+ mobilizing second messenger NAADP, impaired infectivity in a MERS-CoV spike pseudovirus particle translocation assay. This effect was selective as knockdown of the lysosomal cation channel mucolipin-1 (TRPML1) was without effect. Pharmacological inhibition of NAADP-evoked Ca2+ release using several bisbenzylisoquinoline alkaloids also blocked MERS pseudovirus translocation. Knockdown of TPC1 (biased endosomally) or TPC2 (biased lysosomally) decreased the activity of furin, a protease which facilitates MERS fusion with cellular membranes. Pharmacological or genetic inhibition of TPC1 activity also inhibited endosomal motility impairing pseudovirus progression through the endolysosomal system. Overall, these data support a selective, spatially autonomous role for TPCs within acidic organelles to support MERS-CoV translocation.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Endossomos/virologia , Lisossomos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , NADP/análogos & derivados , Benzilisoquinolinas/farmacologia , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Furina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Canais Iônicos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , NADP/farmacologia , Reprodutibilidade dos Testes , Glicoproteína da Espícula de Coronavírus/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...